"機械学習","信号解析","ディープラーニング"の勉強

HELLO CYBERNETICS

深層学習、機械学習、強化学習、信号処理、制御工学などをテーマに扱っていきます

人工知能-ディープラーニング

【PyTorch、Chainer、Keras、TensorFlow】ディープラーニングのフレームワークの利点・欠点【2017年10月更新】

ディープラーニングの大流行の中、様々なフレームワークが登場し、気軽にプログラミングができるようになりました。しかし、そんな中どのフレームワークを選べば良いかわからないという人も多いと思います。そんな人に少しでも参考になればと思い記事を書き…

ディープラーニングの応用のための具体的方針まとめ

ディープラーニングフレームワークの本まとめ

機械学習・深層学習Q&A

もうこれだけは絶対に把握しておいてください! ってものだけ。

【8月中】個人的に勉強したいことまとめ

複素ニューラルネットワークっていうのが有るらしい

自然勾配法関連のメモ

入力データの構造に着目した畳み込みニューラルネットとリカレントニューラルネット

リカレントネットワークの基本的な考え方

【書籍紹介】詳解ディープラーニング TensorFlow・Kerasによる時系列データ処理

最近発売されたディープラーニングの本。 基礎的な内容から始まり、主にリカレントネットワークを、TensorFlowとKerasによる実装を通して理解していきます。

ニューラルネットワークの線形変換と活性化関数について

ディープラーニングの理論的な側面についてメモ

【ただのボヤキ】統計学と機械学習とディープラーニングと

ディープラーニングを更に深くすることを可能にするか?Highway Networksのメモ

今更聞けないディープラーニングの話【ユニット・層・正則化・ドロップアウト】

ディープラーニングを手軽に始められるようにはなったものの、実際に学習を上手く進めるにはチューニングという作業が欠かせません。ここではチューニングの際に気をつけることをサラっとまとめておきます。

Chainerで勾配法の基礎の基礎を確認【ニューラルネット入門】

勾配法はニューラルネットワークの学習の基礎になります。基本的な問題を見て、勾配法を確認してみましょう。

今更聞けないLSTMの基本

ディープラーニングで畳込みニューラルネットに並ぶ重要な要素のであるLong Short-Term Memoryについて、その基本を解説します。

ディープラーニングは動的ネットワーク構築が主流になるか? TensorFlow Fold登場

誤差逆伝搬法(バックプロパゲーション)とは

ニューラルネットワークの学習の工夫

Deep learningに必須なハード:GPU

自動機械学習の登場。深層学習システムを開発する学習ソフトウェア

ニューラルネットのための最適化数学

はじめに 最適化数学 最適化問題の簡単な例 例題の解法 微分による解法の注意点 凸最適化問題 凸関数 凸関数の定義 ニューラルネットの学習 ニューラルネットの目的関数 ニューラルネットの勾配降下法 パラメータを求める戦略 勾配降下法 ニューラルネットの…

時系列データ:隠れマルコフモデルの基礎と、リカレントネットの台等

はじめに 隠れマルコフモデル 確率分布として考える 隠れていないマルコフモデル 隠れマルコフモデル 隠れマルコフモデルの学習 隠れマルコフモデルでの予測 隠れマルコフモデルで何ができるか リカレントネット リカレントネットの構造 時間方向への展開 深…

畳み込みニューラルネットワークの基礎

事前知識 テンソルで理解しておくべきことは意外と少ない 畳み込みとは 畳み込み 畳み込みニューラルネット 畳み込みニューラルネットの畳み込み処理 空間フィルタ 畳み込み層 RGB画像を扱う場合 畳み込み層まとめ 分類の方法について プーリング層 活性化関…

ニューラルネットワークの中間層の働き、その他脳のモデル

ニューラルネットワーク 脳のモデルとしての構造 連合層(中間層)の役割とは ニューラルネットの特徴抽出 ニューラルネットワークは本質的に教師あり学習 強化学習 強化学習の概要 Q学習 深層強化学習:Deep Q Network 脳との関連 その他 連想記憶ネットワ…

現在の人工知能開発

人工知能の歴史の全体像を簡単に概観した以下の記事が多くの人に見られるようになりました(大変うれしいことです)。 s0sem0y.hatenablog.com これを見て非常に多くの人が人工知能に関心を寄せていることを再確認いたしましたので、人工知能開発における別…

出力層で使うソフトマックス関数

ニューラルネットの分類問題 分類するクラスの数=出力層のユニットの数 ラベルデータ 現実の出力 ソフトマックス関数 確率を出力している 交差エントロピー 損失関数 交差エントロピーを用いる理由

自己符号化器(オートエンコーダ)と主成分分析との関係

自己符号化器の役割 自己符号化器の構成方法 数式を見る 損失関数を見る 主成分分析の復習 主成分分析の復習 主成分分析の次元削減 自己符号化器と主成分分析 損失関数の書き換え 主成分分析との比較 自己符号化器の価値 非線形性を容易に表現 雑音に対する…

深層学習:ハイパーパラメータの設定に迷っている人へ

既に深層学習は、chainerやtensorflowなどのフレームワークを通して誰の手にも届くようになっています。機械学習も深層学習も、あまりよくわからないが試してみたいなという人が数多くいるように思います。そして、実際に試している人たちもたくさん居るでし…