人工知能-機械学習
はじめに クープマンモード分解 準備 クープマンモード分解 まとめ 最後に データドリブン手法へ ニューラルネットワークによる表現
はじめに 学習 汎化性能を最も良くする仮説 学習で得られる仮説とベイズ規則、その誤差の比較 バイアスとバリアンス
はじめに 変分法 変分 微分との差異 微分可能 変分と汎関数 補足 機械学習 関数近似 変分ベイズ法
はじめに 変分推論 モデルの書き方 立てたモデルに対する変分近似分布 変分推論 EMアルゴリズムの発展としての変分推論 変分推論の違った見方 近似したいという動機 近似のための損失関数の分解 期待値のサンプリングによる近似 事前分布と変分近似分布のKL…
はじめに 学習の目的と試み 真の目的に対する我々の現実 データのサンプリング(採取) 真の目的と推定・学習の関係 具体的な学習の試み 正則化による統計モデルの制限 ハイパーパラメータの調整 最終評価 (補足)ベイズ推論 理論的な学習の評価 これまでの…
はじめに ガウス過程(GP) GPyTorchを使ったモデリング コード概要 学習コード データとモデルの準備 学習と結果 ハイパーパラメータの振る舞い lengthscale outputscale 最後に
はじめに ガウス過程の構成要素 パラメータの周辺化消去 カーネル関数 ガウス過程 ガウス過程回帰 ガウス過程分類 最後に
もうこれだけは絶対に把握しておいてください! ってものだけ。