HELLO CYBERNETICS

深層学習、機械学習、強化学習、信号処理、制御工学、量子計算などをテーマに扱っていきます

人工知能-Pytorch

【PyTorch入門】Tensorの扱いから単回帰まで

はじめに Tesnor型 dtype その他の重要メソッド empty to numpy detach clone inplace t reshape と view 自動微分 torch.autograd.grad 関数 backwardメソッド 単回帰モデル 最後に

【PyTorch・Pyro】モデリングレシピ

はじめに 単一の分布を使ったモデル 正規分布 同時分布の設計 同時分布からのサンプリング Pyroコード ベルヌーイ分布 同時分布の設計 同時分布からのサンプリング Pyroコード カテゴリ分布 同時分布の設計 同時分布からのサンプリング pyroコード 混合モデ…

PyTorchの周辺ライブラリ

PyTorch 確率的プログラミング GPyTorch Pyro BoTorch Ax Training Wrapper pytorch lightning ignite Catalyst skorch Computer Vision kaolin pytorch3d kornia

PyTorch1.3 リリース【プロダクト側も本格始動】

はじめに Mobile Support Quantization support C++ Frontend Improvements ONNX Exporter Improvements 所感

TensorFlow 2.0 の速度メモ 【vs PyTorch】

はじめに TensorFlow 2.0 データ モジュール名 データセット モデル作成 モデルのインスタンス化と訓練準備 訓練関数 訓練 PyTorch import データ準備 モデル作成 モデルのインスタンス化と訓練準備 学習コード

PyTorch1.X系のテンソル操作と微分操作の基本+ニューラルネットワークの基本

はじめに Tensorの生成 Tensorのメモリ確保 すべての要素が $0$ のTensor すべての要素が $1$ のtensor 各要素が $[0, 1]$ の一様分布から生成されるtensor 各要素が 平均 $0$ 標準偏差 $1$ の正規分布から生成されるtensor Pythonやnumpyの型からtorch.Tens…

torch.jit を使ってみたのでメモ

はじめに Python on CPU Python on GPU Torch on CPU Torch on GPU

TensorFlow 2.0 のコードの書き方基本集(PyTorchとの比較)

はじめに 線形回帰と学習のコード データセット PyTorch TF2.0 違い 些細な違い:層の定義の仕方 些細な違い:ロス関数の書き方 大きな違い:勾配計算とパラメータ更新 ニューラルネットワークの簡単な書き方 PyTorch TF2.0 違い 畳み込みニューラルネットワ…

【簡易速度比較】TensorFlow vs PyTorch

TensorFlow eager と edward と PyTorchでDCGAN【ただのコードの羅列】

TensorFlow EagerモードとPyTorchの学習コードと速度の比較

【PyTorch】地味に知っておくべき実装の躓きドコロ

Pytorchのニューラルネットの書き方

【Pytorch】torch.Tensorの作成と基本操作

Pytorch基本メモ (主にtorchとtorch.aurograd.Variable)

Pytorchで遊ぼう【データ成形からFNNまで】